


Silhouette Smoothing by Boundary Curve Interpolation

Bin Wang1,2, Wenping Wang2, Johnson Wu2, Jiaguang Sun1

1.Tsinghua University

2.The University of Hong Kong

E-mail: bwang@csis.hku.hk, wenping@csis.hku.hk

sowu@hkuspace.hku.hk, jgsun@tsinghua.edu.cn

Abstract

Conspicuous and visually unpleasant polygonal sil-
houettes are often produced when rendering a poly-
hedral approximation (i.e. a polygonal mesh) of a
smooth surface model, regardless whatever shading
method is used to improve the appearance of the in-
terior region. We present in this paper a technique
for displaying a coarse polygonal mesh with smooth
silhouette. Unlike other existing methods that assume
the availability of a fine model, our method uses only
a coarse mesh to generate smooth silhouette through
efficient boundary curve interpolation and local re-
meshing near the reconstructed smooth silhouette. The
time used by our method to render a polygonal mesh
with smooth silhouette is about80% more than render-
ing the original mesh without any fix to the polygonal
silhouette.

Keywords: polygonal mesh, silhouette smoothing,
Hermite interpolation, re-mesh

1 Introduction

It is a standard practice in interactive computer
graphics to use polygonal meshes to represent curved
surfaces for rendering. Standard shading methods in-
clude the Gouraud shading method and the Phong
shading method, which are based on color interpola-
tion or normal vector interpolation. These methods
give a smooth illumination to the interior region of the
polygonal mesh; the silhouette, however, still remains
conspicuously polygonal, thus defeats the purpose of
rendering the mesh as a smooth surface model. The
challenging problem of generating a smooth silhouette
is well recognized by the computer graphics commu-
nity, as summarized by Foley et al. [3]: “No matter
how good an approximation an interpolated shading
model offers to the actual shading of a curved surface,
the silhouette edge of the mesh is still clearly polygo-
nal.”

There are several ways of circumventing the diffi-
culty in generating smooth silhouettes. In order to ren-
der a smooth curved surface model from its polyhedral
mesh approximation, one may try to build a mesh with

a large number of triangles so that the silhouette would
look smooth enough. This approach is feasible with
the development of faster graphics chips, but would
mean that much extra computing resources are needed
to generate and render more triangles in the interior of
the mesh, a task that does not contribute to solving the
silhouette smoothing problem. Moreover, generating
a good quality refined mesh from a given coarse mesh
is another nontrivial problem.

In this paper we present a new method for render-
ing a coarse polygonal mesh with smooth silhouettes.
We assume that only the coarse mesh is available and
no large fine mesh needs to be generated. We work
with only the silhouette edges and triangles adjacent
to the silhouette edges. The flow chart of the method
is shown in Figure 1. There are six main steps: (1)
We extract the visible silhouette edges and the associ-
ated triangles of the coarse mesh. (2) The silhouette
edges are projected to the 2D viewing plane to give
a series of line segments. (3) The straight line seg-
ments are replaced by a smooth boundary curve us-
ing Hermite interpolation. (4) We assume that these
smooth interpolation boundary curves are the projec-
tion of the silhouettes of the smooth surface to which
the coarse mesh approximates. Therefore we project
these smooth boundary curves back to 3D space to
give the smooth silhouettes of the mesh. (5) The
smooth silhouette curves in 3D are sampled for local
re-meshing. (6) The triangles resulting from the re-
meshing, which are adjacent to the smooth silhouette
edges, are rendered.

Because new vertices are added only on the sil-
houettes for re-meshing the model near the silhouette,
there is only a small increase in the total number of the
triangles to be rendered. Our experiments show that
this method takes about80% more time to generate
and render a polygonal mesh with smooth silhouette
than without smooth silhouette.

The remainder of this paper is organized as follows.
In Section 2 we review related work. In Section 3 the
new algorithm for silhouette smooth is described in de-
tail. In Section 4 experimental results are presented. In
Section 5 we conclude the paper with some remarks
and problems for further research.

197



Coarse Mesh

Silhouette
Extraction

2D Hermitte
Interpolation

2D Silhouette Edges 2D Silhouette Curves

Un-project
and Re-mesh

Fine Mesh

Figure 1. The flowchart of the silhouette
smoothing procedure.

2 Related Work

There are mainly two approaches in the existing re-
search aiming at producing a smooth silhouette of a
polygonal mesh: the level of detail (LOD) techniques
and silhouette clipping.

The level of detail technique (LOD) was first used
for rendering terrain scenes. The basic strategy of
LOD is to use a detailed mesh when the object is near
the viewer, and to use a coarse mesh when the ob-
ject is far away from the viewer [4]. Since the pro-
gressive mesh (PM) representation [6, 7] and some
simplification algorithms [10, 14] were introduced for
view-dependent LOD, the strategy of LOD has be-
come more sophisticated, and has been widely ex-
tended [1, 11]. The PM represents a continuous spec-
trum of meshes; only the part of an object in the view
frustum that is near the viewer and front-facing the
viewer is displayed with fine details. Note, however,
that the PM (or LOD) strategy is based on a complex
representation of progressive meshes which requires a
very fine original mesh to start with.

Silhouette clipping [13] assumes that both a coarse
mesh and a fine mesh of a surface are available. It first
renders a coarse mesh and then uses the stencil buffer
to clip the rendering of the coarse mesh against the 2D
smooth silhouette generated from the fine mesh. This
technique produces good rendering result, and entails

a complicated processing of the fine mesh; it needs to
build a series of special progressive hulls:v(M0) ⊇
v(M1) . . . ⊇ v(Mn), whereMn is the original fine
mesh,M0 is the coarsest mesh, andv(M0) denotes
the set of points interior toM . In contrast, we aim
at producing a smooth silhouette from only a coarse
mesh.

3 The Algorithm

In this section we present the details of our algo-
rithm.

3.1 Silhouette Extraction

Silhouette is a useful feature for representing the
shape of an object. Many researchers have studied fast
silhouette extraction of polyhedral models. Markosian
et al. [8] use a random algorithm to find silhouette.
They first find some initial silhouette edges by testing
a small subset of the edges and trace them to find more
silhouette edges. Markosian et al’s algorithm is fast,
but it is not a deterministic algorithm for finding all the
silhouette edges. Benichou and Elber [2] use the Gaus-
sian sphere to find the silhouette of a polygonal mesh
under a parallel projection. Hertzmann [5] and Pop et
al. [12] solve this problem in dual space. Sander [13]
finds the silhouette by locating an anchored cone of
normal vectors in ann-ray tree. Some of these algo-
rithms have anO(

√
n) complexity for an polyhedral

mesh withn edges [13]. All these silhouette extraction
algorithms are reasonably fast and can be used in our
method. We use an exhuastive search in our method
to find all silhouette edges. Experimental results show
that the time of finding the silhouette edges is not the
bottle-neck of the whole computation process.

3.2 2D Hermite Interpolation

Suppose that the silhouette edges of a mesh sur-
face model have been extracted. Then these silhouette
edges can be projected into line segments on the 2D
viewing plane. To obtain a smooth silhouette bound-
ary, we use a cubic Hermite curve to interpolate the
two endpoints of each line segment. A Hermite inter-
polation curve needs two endpoints as well as the two
tangent vectors at the two endpoints. The equation of
a cubic Hermite interpolation is

X(u) = (2X0 − 2X1 + X ′

0 + X ′

1)u
3 −

(3X0 − 3X1 + 2X ′

0 + X ′

1)u
2 + X ′

0u + X0,

u ∈ [0, 1], whereX0 andX1 are the two endpoints,
andX ′

0 andX ′

1 are the tangent vectors atX0 andX1,
respectively.

To define a cubic Hermite curve, we need to deter-
mine the directions and the magnitudes of the tangent
vectorsX ′

0 andX ′

1. We project the normal vectors at

198



C

Q0

Q

Q1

v

è è

0

v1

n0 n1

r

Figure 2. Approximate a Circular arc with
a Hermite curve.

the vertices of the 3D mesh onto the2D viewing plane,
and rotate them byπ/2 to get the directions of the end
tangent vectors. Here the normal vector of a vertex of
the mesh in 3D space is computed as a weighted aver-
age of the normal vectors of adjacent triangles sharing
the vertex.

The magnitudes of the tangents are selected so that
the resulting Hermite curve best approximates a cir-
cle if the end data points are from a circle, which is
a problem considered in [9]. Figure 2 shows a situa-
tion where we want to approximate a circular arc with
a Hermite curve. LetQ0 andQ1 be points in a circu-
lar arc of a circle with radiusr and centerC. Let θ
be half of the angle subtended by the circular arc. Let
n0 andn1 denote the normal vectors of this circular
arc atQ0 andQ1, with corresponding tangent vectors
v0 andv1. It can be shown [9] that, in order to best
approximate the circular arc, the two tangent vectors
should be set to be

v0 = 4ρ(Q − Q0), v1 = 4ρ(Q1 − Q),

whereρ = cos θ(1 + cos θ).
We use the same way as above to determine the

magnitudes of the tangent vectors in the general case,
i.e. when the end data points are not necessarily from
a circle. With the tangent vectors completely deter-
mined above, we obtain a smooth Hermite curve. This
curve is then projected back in the3D space to give
the smooth silhouette curve on the underlying smooth
surface. Thus we get the smooth3D silhouette from
the coarse mesh.

3.3 Re-mesh and Rendering

Given a smooth3D silhouette, re-meshing is re-
quired for rendering the coarse mesh. LetABC be
a front-facing triangle andBDC be a back-facing tri-
angle. LetBC be a silhouette edge andBEC be the
associated smooth silhouette curve. LetP0, P1, . . . Pn

be sampled points on the silhouette curve. Our re-

meshing scheme splits an original triangle inton tri-
angles denoted by4APiPi+1 or 4PiPi+1D, where
i = 0, 1, . . . , n − 1. Figure 4 shows the effect of ap-
plying this re-meshing scheme to a tetrahedron, which
is expected to appear as a sphere due to silhouette
smoothing.

For rendering the new mesh, the normal vector of
the vertexPi is calculated by the following linear in-
terpolation

n(t) = (1 − t)n0 + tn1, t ∈ [0, 1],

wheren0 andn1 are respectively the normal vectors
at the two endpoints of the original silhouette edge.

Silhouette Edge

A

D

Back Face

Front Face

Smooth Silhouette
Curve

Sample Points

0
B(P )

E
n(P )C

P1

P2

Figure 3. The re-meshing scheme.

(a) (b)

Figure 4. (a): A tetrahedron as a coarse
mesh. (b): A smoothed mesh generated
by our re-meshing scheme.

4 Results and Discussion

We present some test examples of using our silhou-
ette smoothing algorithm. Figures 5(a) through 8(a)
show different coarse meshes, which have 500
(Teddy), 1000 (cow), 200 (Venus), and 180 (sphere)
triangles, respectively. Figures 5(b) and 5(c) show
these meshes after silhouette smoothing, where 5(b)
uses 3 sample points (including the end points) on ev-
ery Hermite curve and 5(c) uses 5 sample points. For
the purpose of comparison, Figure 5(d) shows a fine
mesh containing3192 triangles. It is evident that the
silhouette of 5(c) is almost as smooth as that of 5(d).

199



Since the cow mesh has1000 triangles, which is
rather large for the small image size, the difference be-
tween Figures 6(a) and 6(b) is not obvious. However,
with the close-up views in 6(d) for the smoothed sil-
houette and 6(c) for the non-smoothed one, the former
looks clearly better than the latter.

Figure 7 shows a 200-triangle mesh (7(a)), a
silhouette-smoothed mesh (7(b)), and a 5672-triangle
fine mesh (7(c)). Although 7(b) has a smooth silhou-
ette, its lack of interior details is also clear, if compared
with 7(c); the same observation can be made by com-
paring Figures 5(c) and 5(d). That is because our sil-
houette smooth method only improves the smoothness
of the silhouette without adding details to the interior
region.

Figure 8 shows a coarse sphere mesh textured with
a world map and a silhouette smoothed version of the
same mesh with the same texture. Linear interpolation
was used to compute the texture coordinates of the new
vertices of the silhouette smoothed mesh.

Table 1 shows the timing data for rendering several
models with our method. We observe that the time for
rendering a mesh with smoothed silhouette is about
80% more than rendering the original coarse mesh,
and in many cases this time is shorter than rendering
a fine mesh that gives a comparable smooth silhou-
ette. Therefore, our method can be considered an ef-
ficient method for improving silhouette smoothness of
a coarse mesh when a more refined mesh is not avail-
able. All the timing data were taken on a PC with 2.4G
Hz P4 CPU and a GF4-MX440 video card.

5 Concluding Remarks

We have presented a method for fast rendering of a
polyhedral mesh with smooth silhouette. The method
uses 2D Hermite curve interpolation to reconstruct a
smooth silhouette edges of the mesh. Without assum-
ing the availability of a fine mesh, our method pro-
duces satisfactory results, at moderate increase of pro-
cessing time. In general, our algorithm converts polyg-
onal silhouette edges into smooth curve silhouettes.
When a 3D polyhedral model has sharp crease fea-
tures that should not be converted to smooth bound-
aries, these features can be tagged in the data file so
that they can be skipped by our algorithm.

The meshes used in this paper were drawn using
the normal OpenGL format. However, it is found that,
when meshes are drawn with the aid of vertex arrays,
which is a more elaborate drawing mode commonly
used for drawing large meshes, the time of our cur-
rent implementation can be about 3 times more than
the time of drawing only the coarse mesh without any
fix to the polygonal silhouette. This provides the mo-
tivation for our current work on further speedup of our
method.

A possible approach that may lead to a faster
method is to obtain sample points on the smoothed sil-

Table 1. Timing Data.

Teddy Bear Time #1 Time #2 Time #3

Coarse mesh

(500 triangles)
1.09 – –

Silhouette smoothing

(3 sample points)
1.72 0.15 0.38

Silhouette smoothing

(5 sample points)
2.10 0.15 0.67

Fine mesh

(3192 triangles)
4.15 – –

Cow Time #1 Time #2 Time #3

Coarse mesh

(1000 triangles)
1.71 – –

Silhouette smoothing

(4 sample points)
3.31 0.30 1.14

Fine mesh

(5804 triangles)
7.85 – –

Venus Time #1 Time #2 Time #3

Coarse mesh

(200 triangles)
0.72 – –

Silhouette smoothing

(5 sample points)
1.14 0.08 0.23

Fine mesh

(5672 triangles)
7.04 – –

Sphere Time #1 Time #2 Time #3

Coarse mesh

(180 triangles)
0.66 – –

Silhouette smoothing

(5 sample points)
0.92 0.05 0.11

Time #1: Overall Time (ms/frame);
Time #2: Silhouette Computation Time (ms/frame);
Time #3: 2D Hermite Interpolation Time (ms/frame).

houette without having to go through Hermite curve
interpolation in the 2D viewing plane. This may be
achieved by either a 3D Hermite curve interpolation
scheme or a local operation of constructing an inter-
polatory subdivision surface to refine the mesh near
the silhouette.

The coherence of the silhouette computed by our
method cannot be ensured when the model is dis-
played with a moving view point. We anticipate that
this problem can solved by performing a local inter-
polatory subdivision in a neighborhood of silhouette
edges so that the smooth silhouette is computed in a
view-independent manner. We plan to investigate this
approach in our future research.

200



(a) (b) (c) (d)

Figure 5. Teddy Bear mesh: (a) Coarse Teddy Bear mesh (500 tri angles); (b) Mesh after
silhouette smoothing (3 sampled points on 2D Hermite curve) ; (c) Mesh after silhouette
smoothing (5 sampled points); (d) Fine Teddy Bear mesh (3192 triangles).

(a) (b) (c) (d)

Figure 6. Cow mesh: (a) Coarse Cow Mesh (1000 triangles); (b) Mesh after silhouette smooth-
ing (4 sampled points); (c) An enlarged view of (a); (d) An enl arged view of (b).

(a) (b) (c)

Figure 7. Venus mesh: (a) Coarse Venus mesh (200 triangles); (b) Mesh after silhouette
smoothing (5 sampled points); (c) Fine Venus mesh (5672 tria ngles).

(a) (b)

Figure 8. Sphere Mesh: (a) Coarse Sphere Mesh (180 triangles ); (b) Mesh after silhouette
smoothing (3 sampled points).

201



References

[1] D. I.Azuma, Daniel N. Wood, Brian Curless, Tom
Duchamp, David H. Salesin, and Werner Stuet-
zle, View-dependent refinement of multiresolution
meshes with subdivision connectivity, InProceed-
ings of AFRIGRAPH 2003, 2003.

[2] F. Benichou and G. Elber, Output sensitive extrac-
tion of silhouettes from polygonal geometry, In
Proceeding of Pacific Graphics 1999, 60–69, Oc-
tober, 1999.

[3] J. D. Foley, A. van Dam, S. Feiner and J. Hughes,
Computer Graphics: Principles and Practice,
Second Edition, Addison-Wesley, 1990.

[4] P. Heckbert and M. Garland, Survey of polygonal
surface simplification algorithms, InSIGGRAPH
1997 Course notes#25, August, 1997.

[5] A. Hertzmann and D. Zorin, Illustrating smooth
surfaces, InProceedings of SIGGRAPH 2000,
517–526, July, 2000.

[6] H. Hoppe, View-dependent refinement of progres-
sive meshes, InProceedings of SIGGRAPH 1997
, 189–198, August, 1997.

[7] H. Hoppe, Smooth view-dependent level-of-detail
control and its application to terrain rendering, In
Proceedings of Visualization 98, IEEE, 35–42,
October, 1998.

[8] L. Markosian, M. A. Kowalski, S. J. Trychin,
L. D.Bourdev, D. Goldstein and J. F. Hughes,
Real-time non-photorealsitic rendering, InPro-
ceedings of SIGGRAPH 1997, 415–420, August,
1997.

[9] M. E. Mortenson,Geometric Modeling, 2nd edi-
tion, Wiley and Sons, 1997

[10] D. P. Luebke and C. Erikson, View-dependent
simplification of arbitrary polygonal environ-
ments, InProceedings of SIGGRAPH 1997, 199–
208, August, 1997.

[11] R. Pajarola, FastMesh: Efficient View-dependent
Meshing, In Proceedings of Pacific Graphics
2001, 22–30, October, 2001.

[12] M. Pop, G. Barequet, C. A. Duncan and
M. T. Goodrich, Efficient perspective-accurate sil-
houette computation and applications, InProceed-
ings of the 17th annual symposium on Computa-
tional Geometry(SCG’01), 60–68, 2001.

[13] P. V. Sander, X. Gu, S. J. Gortler, H. Hoppe and
J. Snyder, Silhouette Clipping, InProceedings of
SIGGRAPH 2000, 327–334, July, 2000.

[14] J. Xia and A. Varshney, Dynamic view-
dependent simplification for polygonal models, In
Proceedings of Visualization 96, IEEE, 327–334,
October, 1996

202


